If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10r^2-4r-9=0
a = 10; b = -4; c = -9;
Δ = b2-4ac
Δ = -42-4·10·(-9)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{94}}{2*10}=\frac{4-2\sqrt{94}}{20} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{94}}{2*10}=\frac{4+2\sqrt{94}}{20} $
| 8x-41=63 | | 13x-12x=19 | | 2h-10h+5=85 | | ((4-(x/2)^2)+x^2)=0 | | 2(6x-3)-8=20-(2x+6) | | -(1/3x)-7=12 | | x^2-12x=38 | | 8x-63=41 | | 2w+9=33 | | 8x+41=63 | | 6v+4=10 | | 140+140+140+140+x+x=720 | | 6.5(n−5)=18.2 | | 2.49+1.24y=11.17 | | x²=0 | | 4/3-y16=24 | | (4-(x/2))^2=0 | | 6x-7=12-6x+13x | | P=(22+x)(154-6x) | | 3.25=w+0.25 | | 19c+9=11c+17 | | 2(6.2)+y=9 | | y/3-5=22 | | f(4)=3(4)+-4 | | (x/2)^2=0 | | -6+2/5x=4 | | 2(x-2+3=2x-1 | | 3x(18.50+104.50)=2 | | (4-(x/2)^2)+x^2=0 | | B=8t | | (4-(x/2)^2+x^2=0 | | 2(q-11)=-12 |